
 

 

 

 

Planning a Successful Visual Basic 6.0 to .Net Migration: 

8 Proven Tips 

Jose A. Aguilar 

January 2009 

 

Introduction 

Companies currently using Visual Basic 6.0 for application development are faced with the challenge 

of moving away from a platform that, as of March, 2008, is no longer supported by Microsoft1. One 

option that is available to those companies is to use automated migration technologies to help 

migrate these application into Microsoft’s .NET Framework, the recommended upgrade path. 

Migrating allows companies to leverage the investment in the current application, while moving into a 

fully-supported and updated development environment. 

There are several tools in the market that can help with this migration process. Microsoft ships the 

Visual Basic Upgrade Wizard with all version of Visual Studio .NET, and companies like ArtinSoft 

offer the Visual Basic Upgrade Companion, a migration solution with a proven record of successful 

migration projects in the past years. 

Even with the help of these migration tools, it is still necessary to plan the migration project in order 

to ensure its success. ArtinSoft has been involved in automated software migrations for more than 

15 years, and has been working alongside Microsoft for more than 8 years performing Visual Basic 

6.0 to .NET migrations. 

In this whitepaper we present eight recommendations that you should take into account when 

planning a Visual Basic 6.0 migration to the .NET Framework. These tips are based on ArtinSoft’s 

experience performing Visual Basic 6.0 to .NET migrations. 

 

                                                      
1 Product Family Life-Cycle Guidelines for Visual Basic 6.0 http://msdn.microsoft.com/en-

us/vbrun/ms788707.aspx  



 

 

 

 

The Migration Project Methodology 

 

Throughout its experience, ArtinSoft has developed a very mature project methodology that allows 

for a very predictable, controlled migration process. This is achieved by dividing the application 

upgrade into two main phases: first, getting an application in the new platform that has 100% 

Functional Equivalence to the original Visual Basic 6.0 application, and second, performing 

incremental changes to leverage the new functionality available in the .NET Framework. 

 

Figure 1 ArtinSoft Migration Project Methodology 

 

With this methodology, the migration project is divided into several process groups: 

1. Evaluation Process 

2. Automatic Conversion 

3. Manual Changes 

4. Functional Equivalence 

5. Customized Evolution 

Each process group is further subdivided in smaller stages. For example, the main objective of the 

Manual Changes processes is to make any necessary changes upon the code generated during the 

Automatic Conversion, in order to get it up to Functional Equivalence. This requires several activities, 

such as fixing the Upgrade Warnings from the automatic conversion tool, fixing compilation errors, 

addressing runtime errors, and performing different levels of quality assurance activities throughout 

the process. 

The tips presented in this whitepaper are framed in this migration process. For more information, you 

can access ArtinSoft’s website at http://www.artinsoft.com. 

 



 

 

 

 

Tip #1: Perform Pre-Migration Tasks to Improve the Quality of the Migrated 

Code 

 

A migration project requires you to plan for some pre-migration work. In this first part of the project it 

is necessary to perform certain activities to improve the quality of the code that will be generated 

during the automated migration. There are two types of pre-migration tasks that involve changes to 

the Visual Basic 6.0 code base: Code Cleanup and Code Preparation. 

The Code Cleanup activity is an opportunity to perform maintenance tasks on the code that are 

usually put off during the regular development cycle. This includes removing code that is no longer 

used, removing redundant functions or methods, and some basic code and project restructuring. 

For the Code Preparation activity the developers should modify the application’s code to improve the 

quality of the generated code. There are tools out there that can help you identify code in the 

application that will not convert cleanly. One such tool is Microsoft’s own Code Advisor for Visual 

Basic 6.02. Keep in mind, however, that if you are using a tool like ArtinSoft’s Visual Basic Upgrade 

Companion, the migration tool will take care of most issues reported by the Code Advisor3. Some 

issues are easier to fix in VB6 than in .NET, such as the Use of #if and Non-Zero based arrays, so 

you should take care of them regardless of the migration solution you are using. 

Also, keep in mind the following rule of thumb: Using high quality code as input for the VBUC 

generates high quality .NET code as output. 

 

Tip #2: Establish a Migration Order Based on Interdependencies and 

Business Needs 

 

Migration projects, depending on the company’s needs, can be structured in several ways. The two 

most common ways of establishing this order is to use either a Top-Down or Bottom-Up migration.  

                                                      
2 Microsoft’s Code Advisor for Visual Basic 6.0 can be downloaded from 

http://www.microsoft.com/downloads/details.aspx?FamilyID=A656371A-B5C0-4D40-B015-

0CAA02634FAE&displaylang=en  
3 Visual Basic Upgrade Companion vs. Code Advisor http://www.artinsoft.com/VB-Upgrade-

Companion-vs-CodeAdvisor.aspx  



 

 

 

 

 

Top-Down migrations, starting with the VB6 projects (*.vbp) you want and then working your way 

down to the migration issues, are recommended if: 

• You need to do partial deployments 

• The cost of additional testing and integration work is acceptable 

• You are working on a proof of concept 

 

Bottom-Up migrations, on the other hand, imply that you will first fix the upgrade issues in the 

generated code, and then start moving upwards until you have fully functional projects. The 

downside of this is that you need to have at least all the migration and compilation issues solved 

before you can start testing the application. 

As for the work distribution between the developers that will be assigned to the project, it can also be 

done in several ways, each with its advantages and disadvantages: 

• Per Visual Basic 6.0 project (*.vbp): This is usually recommended if the original developer of 

the VB6 project will be working on the migration. Due to the developer’s familiarity with the 

code, it will be easier to fix the different migration issues present in it. 



 

 

 

 

• Per Visual Basic 6.0 file: This is a more scalable approach than going per Visual Basic 6.0 

project. Different files can be assigned to different developers and have each one fix all the 

compilation and upgrade issues present in these files. This can significantly speed up the 

first stages of the Manual Changes process by parallelizing the work. 

• Per Migration Issue: Having a developer specialize in the solution of one particular type of 

migration issue allows an even higher degree of concurrency in the project. Usually fixing the 

first occurrence of a particular issue requires some research and thus takes more time. 

Further occurrences are normally fixed in a fraction of the time it took the first time. By using 

this approach, the developer’s efforts are optimized, and it also lends itself to having a large 

number of resources tackling different migration issues in parallel, further speeding up the 

process. 

 

Tip #3: Manage Risks 

 

Even though this is a very generic statement, there are a couple of things that can be done in a 

migration project in order to mitigate risks. First of all, it is recommended that you convert a small, 

representative module (using a Top-Down approach) before starting the whole migration. This will be 

useful to diminish threats associated with: 

• Performance: The performance of the migrated module can be tested and tuned while 

performing the migration of the remaining modules. Since VB6 and .NET are significantly 

different platforms, analyzing the performance upfront will help you identify potential issues 

and avoid surprises during the last stages of the project. 

• Estimate: It is necessary to closely track the effort required to migrate this first module. This 

will help with the validation of the estimate for the remainder of the application 

Also, something from ArtinSoft’s experience that has been key in performing successful upgrades, is 

to migrate to functional equivalence first, and then start making changes to leverage the functionality 

of the new platform. This will be further expanded in Tip #5: Migrate to Functional Equivalence, then 

Re-Architect. 

 

Tip #4: Consider Quality Assurance Activities 

 

Migration projects are more QA-intensive than other types of software development efforts. You 

should allocate AT LEAST 35% of the total effort of the project to testing activities, though the ideal is 

to assign around 50% of the time for these tasks. 



 

 

 

 

As for planning the testing, you should use a set of test cases as an objective validation for the 

migration process. The quality assurance team should make sure that these test cases execute 

correctly in the Visual Basic 6.0 application before running them on the migrated version. This should 

be done in parallel by the testing team with the first development activities of the project. This point is 

covered with more detail in Tip #6: Identify a Test Harness to Validate Functional Equivalence. 

 

Tip #5: Migrate to Functional Equivalence, then Re-Architect 

 

Taking the decision to migrate an application means that there is significant value in the business 

rules and the logic embedded in it. The business may depend on these very specialized rules, so it is 

imperative to leverage the current investment by moving them forward. This is something very 

important to keep in mind during the migration project. 

It is always tempting, especially for developers, to use the migration as an opportunity to rewrite 

parts of the applications that could work in a better way. On paper this sounds like the ideal time to 

do this, but in reality it is something that should be avoided as much as possible. ArtinSoft’s 

experience shows that doing a straightforward port to reach functional equivalence is a measurable, 

easy way to control the process. Adding additional technical complexity to the project by rewriting a 

large part of the application adds uncertainty, and can cause the project to go out of control. There 

will always be an opportunity to do some improvements while performing the migration, but if a 

decision is made to work on them, make sure that all stakeholders understand the impact that these 

changes may have on the overall migration effort. 

 

Tip #6: Identify a Test Harness to Validate Functional Equivalence  

 

Migration Projects should have measurable, deterministic criteria to establish when the project is 

completed. This will set realistic expectations with stakeholders in the project, and in turn will 

translate into a more manageable and controllable project. 

In ArtinSoft’s experience, using test cases is an ideal medium to validate when the migration is 

complete. Having a set of test cases will help the project to have very clear goals: to have the 

migrated application run the same test cases as the original system, and produce the exact same 

results. 

If there is the possibility of using a third party to provide additional resources during the migration 

effort, then special care should be taken to make sure that the test cases are as detailed as possible, 

without skipping any functionality of the application. Keep in mind that these additional resources are 



 

 

 

 

not experts in the application or its domain, so having detailed instructions will allow them to be 

productive very quickly, without having to undertake application-specific or domain-specific training. 

 

 

Tip #7: Avoid Introducing Dependencies on Proprietary Runtimes 

 

Several migration solutions out there will release you from one legacy environment only to lock you 

in with a proprietary runtime. Over time, this approach leads to additional costs, namely: 

• Additional support costs from the migration tool’s vendor 

• Dead time while waiting for the vendor to release a new version of the runtime that fixes an 

issue that is affecting you 

• Possible backward compatibility issues with new releases of the runtime 

• Additional training costs and a higher learning curve when new developers start doing 

maintenance on the migrated software 

Using a runtime might be an option when there is a significant difference with the target platform. 

This may speed up the process, and can significantly lower the cost of the migration, but if you 

decide to go with a runtime make sure that it: 

• Doesn’t limit the future scalability of the migrated application 

• Provides full source code and documentation, so you don’t have to rely on the vendor 

• Doesn’t have royalties of any kind associated with it 

This last bullet is especially important, not from a technical but from a business perspective. Being 

tied down with redistribution royalties may end up affecting potential business models you may want 

to explore in the future. 

 

Tip #8: Assemble the right team 

 

The team that is required to achieve a successful migration has a mix of skills and roles. The skills 

for positions such as quality assurance or project management are very similar to the ones required 

for any other software development effort. At a high level, the profile of the developers that will be 

working in the code itself has three main skill sets, in decreasing order of importance: 

1. Target platform experience. It is ideal that the developers have good knowledge and 

experience in the .NET Platform (either VB.NET or C#). This is the single most important 

factor for the migration to be successful 



 

 

 

 

2. Source platform experience: It is important to have resources on the team that are 

knowledgeable on Visual Basic 6.0. This, however, comes in second, and is not required for 

all developers 

3. Application knowledge: The ideal scenario is to have the developers of the VB6 application 

or somebody with in-depth knowledge of the source code involved in the project directly, or 

at least available for questions. Many questions will arise during the migration, and having 

an expert on the functionality is the best way to avoid wasting time figuring out what a block 

of code was trying to achieve. 

 

Conclusions 

 

Using automated migration tools as part of an overall upgrade project methodology is a good way to 

leverage the current investment in Visual Basic 6.0 applications and move them to the latest 

technology. Due to the tools that are available in the market today, like ArtinSoft’s Visual Basic 

Upgrade Companion, this has become a very viable proposition, especially given the fact that VB 6.0 

is no longer supported by Microsoft. 

A Migration Project presents some challenges that are not common in other types of software 

development efforts. With more than eight years executing successful Visual Basic 6.0 to .NET 

conversion projects, ArtinSoft has developed a proven software migration methodology, and the tips 

presented in this document are based on the experience accumulated over these years, having 

proved their value over and over again. 


